
Research Statement
Carlos C. Martínez. Versión (2006)

"If you keep proving stuff that others have done, getting
confidence, increasing the complexities of your solutions - for
the fun of it - then one day you’ll turn around and discover
that nobody actually did that one! And that’s the way to
become a computer scientist." — Richard Feynmann

Synopsis
My research concerns the theoretical and algorithmic aspects of higher order unification and mat-

ching problems in typed lambda calculi modulo type isomorphisms. This work has been motivated by the
intricacies of trying to automate program transformations viewed as instances of higher order matching
problems. My goal has been to find justifications to perform these transformations in a broader and yet
meaningful context.

Background
The problem of automating higher order logic was first addressed by Robinson [Rob69]. The com-

plexity of the problem become evident when higher order unification was shown to be undecidable in
1972, independently by Huet [Hue72, Hue73] and Lucchesi [Luc72], a result later sharpened by Goldfarb
[Gol81].

(Higher Order Unification) Let M and N be lambda-terms. We say that M and N are unifiable if and
only if there exist a substitution σ such that σ(M) = σ(N).

Huet[73] proposed to solve a restriction of the general unification problem. His approach consis-
ted in an enumeration of pre-unifiers, this is; delaying and assuming solved flexible-flexible equations
(These are equations where both head-terms are free variables, usually having infinite solutions), and
gave a complete set of reduction-transformations for the remaining cases. An other important case of
unification is when one of the terms has no free variables, this is known as the matching problem, it
has shown to be sufficiently powerful for symbolic computation. In this setting, Huet’s semi decision
algorithm turns out to be decidable, generating a finite set of solutions in the case of second order terms.
However, the general matching problem for the full higher order hierarchy has remained open after 30
years of investigation. Further restrictions of the unification problem have shown to be decidable as well,
it was possible to combine pre-unification with first order unification, as in Miller [Mil91], where the
decidability of higher order pattern unification was also shown.

(Program Transformation Schemes.) We said that a tuple T = 〈M,N〉 is a program transformation
scheme if and only if M,N are two program contexts having the same free variables and types. Such
program transformation M ⇒T N is applicable to a program P at Q if the following condition Q =
σ(M) holds.

1



P Q

Optimization

�
�
�

��
�
�
�

Mσ

Matching
oo

Program
Transformation

��
P Q’ Nσ

Matching
oo

The second order matching algorithm introduced by Huet and Lang [HL78] in the late 70’s was
motivated by program transformation schemes originally suggested by Burstall and Darlington [BD77],
these transformations based on rewriting techniques are easily represented by second order instances
of matching problems. The program transformation paradigm provides programmer with clearer coding
style, and leads to desirable programming properties, such as; modularity, maintainability and readability,
as counterpart of usual programming practices that sometime relies on obscure efficient coding. These
ideas have been used by O’de Moor and Sittampalam [OS99] in the design of functionals programming
languages compilers as part of an optimization pre-processing.

Avoiding paradoxes has been crucial to the development of foundations of mathematics in the past
century, and one can recall two different approaches, one based on sets (ZF) and the other based on
functions (Type Theory) as their primitive concepts. The latter has more relevance in our context. The
concept of types was introduced to avoid such paradoxes, a notion which will have an essential role
in computer science, and became an important tool in the design programming languages, to prove
properties of programs, as well as to trace program errors.

(Type Isomorphisms) Two Types A and B are isomorphic A ' B if and only if there exist functions
M : A → B and N : B → A such that M ◦N = IdA and N ◦M = IdB.

There has been a great deal interest over the years in constructing models of lambda calculi which
satisfy certain equations between (isomorphisms) types; specifically, recursive definitions of data-types
are often interpreted as equations to be solved over mathematical structures. The existence of non-
trivial isomorphisms has been shown in the simply lambda calculus by Dezani [Dez76], second order
lambda calculus by Bruce, Di Cosmo and Longo [BDL91] and [DiC95], and recursive type systems
Fiore, Di Cosmo and Balat [FCB02]; providing an interesting interplay of the close relationship between
these calculi and their relevant categorical structures, proof systems [Sol83, Sol93], and applications to
retrieving software components as introduced by Rittri [Rit91],[Rit93].

The realization of type isomorphisms relies on the existence of invertible terms, so it is important
to have a characterization of such terms. Dezani[Dez76] has described the finite hereditary permutation
terms as the only invertible terms in the simply typed case. It is rather easy to see, that given two
isomorphic simple types, there are a finite number of invertible terms up to α-equivalence witnessing
this. Di Cosmo [DiC95] has extended Dezani’s invertible terms characterization to the first order type
system in the presence of products and unit types, and he has also studied a second order type system
that approaches the full type system of the ML functional programming languages. These works provide
us with the content to explore the scope of our ideas.

2



Thesis Work
As we mentioned above matching is a plausible frame for program transformations, and our aim

has been to strengthen this approach by providing a more general setting. It is not hard to see that
matching can be sometimes restrictive for program transformation purposes, since matching respect
types. We have shown that this constraint rules out some instances having mild differences. We have
proposed that it is possible to overcome these difficulties in a way the program transformation can be
performed, and we have suggested that the difference in reordering programs by invertible ones is mild,
thereby supporting our objective of enriching matching under isomorphism of types.

(Program Isomorphisms) Two programs P : A and Q : B are program isomorphic P ' Q if and only if
A ' B by an invertible program F : A → B such that FP = Q.

This definition lead us to our new matching definition.

(Matching Programs Modulo Type Isomorphism) Let P and Q be programs. We say that P is matchable
to Q if and only if there exist inputs in1, ..., inn such that Pin1...inn ' Q.

Some of the most interesting work concerns polymorphic type disciplines, where the reuse of existing
code becomes natural. This being our goal, at this point we can report progress in preliminary states
restricting ourselves to the case of simply typed lambda calculus, where the setting of this project is
well understood.

Enumeration of invertible terms leads to a naive decision procedure for unification modulo type
isomorphisms, obtained by exhaustively seeking for solutions of the usual unification problems generated
by the finitely many invertible terms. As we believe this approach is rather inefficient and it becomes
natural to expect refinements. We have shown that it is possible to address the problem of finding an
invertible terms and solving the unification problem in the usual setting of solving it by transformations.
The novel idea here is to introduce new variables witnessing the invertible terms that allow us to split
those tasks by adding an extra transformation to the standard set of transformations of the underling
decidable restriction of the unification problem.

Ongoing Work
Can we achieve more efficiency? It has been shown by Zibin, Gil and Considine [ZGC03] that tes-

ting type isomorphism can be done efficiently in the presence of functions, products, and unit types,
establishing a polynomial upper bound on the size of the input types. So we might expect improvements
by combining successfully these algorithms with a matching algorithm. A first challenge has been intro-
duced and remains to be addressed; ZGC’s decision algorithm has been derived from classical bottom
up tree isomorphism algorithms, and unification algorithms are usually top down reduction.

Once efficiency is achieved, it would be desirable to derive complexity results on decidable cases
such as matching at low order and pattern unification; and it would also be interesting to generate an
implementation to test these ideas in the context of program transformation.

3



Referencias
[BDL91] Bruce K., Di Cosmo R., Longo G., Provable Isomorphism of Types, Mathematical Structures

in Computer Science, 2:231–247, 1991.

[BD77] Burstall R., Darlington, J. Some program transformations for developing recursive programs In
Proceedings International Conference on Reliable Software, Los Angeles, 1975, and also Journal
Assoc. Comput. Mach., 24:44-67, 1977.

[Ch40] Church A., A formulation of the simple theory of types, Journal of Symbolic logic, 5:56–68,
1940.

[Dez76] Dezani-Ciancaglini M., Characterization of Normal Forms Possessing Inverse in the λβη-
Calculus, Theoretical Computer Science, 2:323–337, 1996.

[DiC95] Di Cosmo R., Isomorphism of Types: from λ-calculus to information retrieval and language
design, Birkhäuser, (1995). Progress in Theoretical Computer Science. Birkhauser, 1995. ISBN-
0-8176-3763-X.

[DM04] Dougherty D. and Martínez C., Unification and Matching Modulo Type Isomorphism, In
Proceedings of II International Workshop of Higher Order Rewriting, Aachen, Germany, June
2004. Abstract in Technical report of the Computer Science Department of RWTH Aachen
University.

[FCB02] Fiore M., Di Cosmo R. and Balat V., Remarks on isomorphisms in typed lambda calculi with
empty and sum types, In Logic in Computer Science, pp. 147–156, Los Alamitos, CA, USA,
July 22–25 2002. IEEE Computer Society.

[Gol81] Goldfarb W., The undecidability of the second order unification problem, Journal of Theoretical
Computer Science. 13:225–230, 1981.

[Hue72] Huet G., Constrained resolution: A complete method for higher order logic. Ph.D. dissertation,
Case Western Reserve University, Cleveland, Ohio, 1972.

[Hue73] Huet G., The Undecidability of Unification in Third Order Logics, Information and Control,
22:257–267, 1973.

[HL78] Huet G. and Lang B., Proving and Applying Program Transformations Expressed with Second
Order Patterns, Acta Informatica, 11:31–55, 1978.

[Luc72] Lucchesi C.L., the Undecidability of the Unification Problem for Third Order languages, Report
CSRR 2059, Dept of Applied Analysis and Computer Science, University Waterloo, 1972.

[Mil91] Miller D., A logic programming language with lambda-abstraction, function variables, and
simple unification, Journal of Logic and Computation, 1(4):497–536, 1991.

[OS99] de Moor O. and Sittampalam G., Generic Program Transformation, Proceedings of the 3rd
International Summer School on Advanced Functional Programming. Springer Lecture Notes in
Computer Science, 1608:116–149, 1999.

[Rob69] Robinson J.A., New directions in mechanical theorem proving, In A.J.H. Morell, editor
International Federation for Information Processing Congress 1968 63–67, North Holland, 1969.

4



[Rit91] Rittri M., Using types as search keys in function libraries, Journal of Functional Programming,
1(1):71–89, 1991.

[Rit93] Rittri M., Retrieving Library Functions by Unifying Types Modulo Linear Type Isomorphism,
Theoretical Informatics and Applications, 27:71–89, 1993.

[Sol83] Soloviev S., The Category of Finite Sets and Cartesian Closed Categories, Journal of Soviet
Mathematics, 22(3):1387–1400, 1983.

[Sol93] Soloviev S., A Complete axiom system for Isomorphism of Types in Closed Categories, Logic
Programming and Automated Reasoning, 4th International Conference, LNCS 698: 360–371,
1993.

[ZGC03] Zibin Y., Gil Y. and Considine J., Efficient algorithms for isomorphisms of simple types, In
Proceedings of the 30th ACM Symposium on Principles of Programming Languages (POPL
2003), pp. 160–171. ACM Press, 2003.

5


